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Behavior is driven by the collective spiking of large networks of neurons

Jercog et al. CSHPB 2016

Large Scale Recording Techniques

• EEG
• MEG
• LFP
• ECoG
• fMRI
• Voltage-sensitive dyes
• Calcium imaging
• Multiple unit recordings



  

Single cell spiking is highly irregular



  

To understand how spiking activity drives behavior we need a network theory
for irregularly spiking neurons.  I will discuss the theory developed in Amit and 
Brunel, Network (1997), Brunel and Hakim, Neural Comp. (1999), Brunel, J. 
Comp. Neurosci. (2000) and other papers.  As a resource I will use the review 
chapter entitled “Mean-field theory of irregularly spiking neuronal populations and 
working memory in recurrent cortical networks” by Renart, Brunel and Wang.



  

Ce excitatory inputs

Ci inhibitory inputs

Leaky Integrate-and-Fire Neuron

Instantaneous Post-synaptic Currents

First we consider a single neuron receiving many inputs

We assume the inputs are independent Poisson processes with rates      and      .   

Consider the evolution of the probability distribution for the voltage                .  

refractory time

threshold B.C.



  

Because the stochastic process is Markov, the probability distribution can be written

Please go to the notes, section A, to find the derivation of the evolution equation for the 
probability distribution.  In the limit of a large number of very weak inputs the equation 
becomes the following Fokker-Planck equation.

+ appropriate boundary conditions (next page)



  

To derive the boundary conditions first rewrite the Fokker-Planck equation as a 
continuity equation. 

This equation says that changes in the probability density in a given voltage interval 
are due to a flux from that interval.  The flux is the following 

The probability density is zero for any voltage above the threshold.  This means it 
must approach zero continuously from below.  Why?  In the diffusion approximation 
all the “kicks” are vanishingly small; if we had finite kicks the density could be non-zero
at threshold. 



  

Finally we have the boundary conditions:

The density goes to zero at threshold.

The flux at threshold gives the firing rate.

The flux exiting at the threshold is reinjected 
at the rest potential.

The integral must be one for a probability density.

Please refer to the notes, Section B, for a derivation of the solution of the 
steady-state probability density and firing rate.



  

Steady-state probability density for LIF Steady-state firing rate for LIF



  

Steady-state probability density for LIF Steady-state firing rate for LIF



  

We see that at low firing rates the spiking is highly irregular while at high rates it 
is nearly periodic.  Neurons in-vivo are highly irregular; this is sometimes quantified 
by the coefficient of variation of the interspike interval (CV) which is 1 for a Poisson
Process.  The CV can be calculated for the LIF neuron, see section C of the notes for 
the derivation.



  

Theory for recurrent networks

So far we have calculated the firing rate of a single LIF neuron bombarded by Poisson 
Inputs.  To extend this to a recurrent network we only need to make the input and output
firing rates self-consistent.  When might this work?  Which assumptions may break down?  

We will consider two kinds of networks: 1 – all-to-all connected networks and 2 - 
sparsely connected networks.

To make things consistent yet easy, from now on I will discuss networks of excitatory 
and inhibitory cells (E-I networks) in equal numbers, for which individual E and I cells 
are identical and synaptic weights are constant and and .

Also, for the sparsely connected networks I will assume the sparseness is the same for 
all connectivities.  When this is the case, then the mean and variance of the input to any 
cell are the same and can be written

where the rates are those of the neurons in the network. 



  

All-to-all connected networks

Here all neurons receive identical recurrent input (the meanfield).  A proper 
thermodynamic limit (large system size) is only possible if the synaptic weights 
scale as 1/N.  The number of connections C = N.  The means that   

so the only fluctuations in the input are external in the large-system limit.

The firing rates are found self-consistently through the steady-state Eq.5 from the notes



  

The steady-state theory for the all-to-all network works quite well even for
relatively small system sizes.  Even for N = 10 the deviation from theory is 
only about 10% for the average rate.  Please see notes, section D for the 
parameter values I used.



  



  

Sparse networks

Here either: 1 – all neurons receive the same number of connections C, which are chosen 
randomly, or 2 – connections are made with probability C/N.  In the second case the number 
of connections is a binomial variable with mean C, an added source of fluctuations.  I will not 
treat the effect of this quenched variability here.   

If we want to keep fluctuations of order one in the thermodynamics limit, we can take a 
fixed connection probability (p = C/N) and scale the synaptic weights as 1/sqrt(N).  This 
leads to

Where the strength of external inputs scales the same way with N.  Clearly the mean input 
explodes in this limit, meaning the activity is epileptic or silent...unless the rates exactly cancel.  
This is known as the balance condition and this is a balanced network, see (van Vreeswijk 
and Sompolinsky Neural Computation 1998) for a thorough discussion of this type of 
scaling.  



  

Sparse networks
Alternatively, we can just study finite networks with some given number of connections per 
neuron.  In this case finite size effects may need to be taken into account.  Please see 
Section E of the notes for a description of the network I use.



  



  

Finite-size effects are due to coherent fluctuations in the populations firing rate, i.e. they 
are shared fluctuations in the inputs to all cells.

This is why coherent fluctuations vanish as N goes to infinity.

We assume neurons are Poisson processes, therefore there are fluctuations (the variance 
equals the mean).

+ independent fluctuations

where



  

In a sparse network, quenched variability gives rise to “noisy” dynamics, even in the 
absence of noisy forcing.  The model I simulated below is completely deterministic, yet 
the theory assuming neurons are Poisson processes works pretty well!  



  

This is what the dynamics looks like when the mean excitatory input (which is just 
a constant drive) is 24 mV (the middle dot from the last slide).  Does this look Poisson
to you?



  

Linear Stability

Up until now we have just calculated the stationary state in networks of LIF neurons.  However,
E-I networks can generate oscillations and bistable regimes, i.e. the stationary state can become
unstable.  We can calculate when these instabilities will occur (as a function of some network 
parameter such as external drive) using standard linear stability techniques.

steady-state solution small-amplitude perturbation

eigenvalue of perturbation 

Please see notes, sections F and G for a discussion of how to calculate the linear stability.



  

The linear stability calculation leads to a rather complicated eigenvalue problem.  It is 
actually much easier nowadays to simply solve for the stationary solution and linear stability 
numerically directly from the Fokker-Planck equation, thanks to the work of Magnus 
Richardson (Richardson, PRE 2007).  This is how I made all of the theoretical curves here 
BTW.  Please see section G of the notes for details on the numerical method.  The numerical
method works for any kind of integrate-and-fire neuron, not just leaky! 

There is much more to be said about meanfield methods for spiking networks.  We have only 
justed scratched the surface, but we have only had one hour.  Here's a list of topics, some of 
which are well understood and some less so.

● Non-instantaneous synapses.
● Quenched variability: firing rate distributions.
● Response to time-varying inputs.
● Oscillatory states.
● Working memory states.
● Microscopic state versus macroscopic state.
● Reduction of spiking networks to firing rate models.



  

Just to conclude on an interesting note, one may ask “What happens in recurrent networks of 
LIF neurons when the diffusion approximation breaks down”?  I'm not sure it's entirely understood
yet.  Here are two attempts to do so.
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